WristWash: Towards Automatic Handwashing Assessment Using a Wrist-worn Device

Washing hands is one of the easiest yet most effective ways to prevent spreading illnesses and diseases. However, not adhering to thorough handwashing routines is a substantial problem worldwide. For example, in hospital operations lack of hygiene leads to healthcare associated infections. We present WristWash, a wrist-worn sensing platform that integrates an inertial measurement unit and a Hidden Markov Model-based analysis method that enables automated assessments of handwashing routines according to recommendations provided by the World Health Organization (WHO). We evaluated WristWash in a case study with 12 participants. WristWash can successfully recognize the 13 steps of the WHO handwashing procedure with an average accuracy of 92% with user-dependent models, and with 85% for user-independent modeling. We further explored the system’s robustness by conducting another case study with six participants, this time in an unconstrained environment, to test variations in the handwashing routine and to show the potential for real-world deployments.

 

To Appear in ISWC’18 ( international symposium on wearable computers).  The Paper draft is available upon request

Bookmark the permalink.

Comments are closed